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Recent investigations of microfluidic flows have focused on manipulating the motion of very thin liquid
films by modulating the surface tension through an applied streamwise temperature gradient. The extent to
which the choice of contact line model affects the flow and stability of such thermocapillary-driven films is not
completely understood. Regardless of the contact line model used, the linearized disturbance operator corre-
sponding to the evolution of the film height is non-normal, and a generalized non-modal stability analysis is
required. Surprisingly, early predictions of frontal instability that stemmed from conventional modal analysis of
thermocapillary flow on a flat, infinite precursor film showed excellent agreement with experiment. Within the
more rigorous framework provided by a generalized stability analysis, this work investigates the transient
dynamics and amplification of optimal disturbances subject to a finite precursor film generated by attractive
van der Waals forces. Convergence of the disturbance growth rates and perturbed shapes to the asymptotic
solutions obtained by conventional linear stability analysis occurs early in the spreading process. In addition,
the level of transient disturbance amplification is minimal. The equations governing thermocapillary-driven
spreading exhibit a small degree of non-normality, which explains the source of agreement between modal
theory and experiment. The more rigorous generalized stability analysis presented here, however, affords
critical insight into the types of disturbances leading to maximum unstable growth and the exact influence of
the contact line model used.
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[. INTRODUCTION effect of different contact line models on the flow and stabil-
ity of films driven to spread by gravity or centrifugati¢l,

The recent focus on microscale flow phenomena and miit was shown that there was little difference in the shape of
crofluidic deviceq1,2] has generated interest in controlling the base states, the dispersion curves, and the eigenfunctions
the motion of thin liquid films through modulation of surface generated by either the infinite flat precursor fiiig] or the
forces. One such technique exploits the temperature depefireenspan slip conditiof®] for parameter ranges leading to
dence of the surface tension to regulate the magnitude arfgPmparable film thicknesses. The second issue involves the
direction of flow[3,4]. Application of a temperature gradient tYP€ of analysis used in characterizing the linear stability of
to a solid substrate produces a gradient in the surface tensidf€ flow. While numerical predictions of the most unstable
of the supported liquid film. This induced thermocapillary Wavelength computed from conyentlonal _modal linear stabil-
stress forces liquid to spread from warmer to cooler regions'.ty. show excellent agreement with experiment fo_r thermally
For thin films spreading on a uniform and chemically homo-dnven flows[10,11, it is now recognized12] that since the

eneous surface. a cabillary ridge develops at the Ieadinlinearized disturbance operator is nonnormal, a generalized
9 ' piiary mag P Honmodal analysis is required. Recently, a nonmodal analy-

) sis for thermocapillary-driven spreading on a flat and infinite
ridge undergoes capillary breakup to produce a parallel array, o . ,-sor film has shown that the disturbance growth rates

qf spreading rivulets that resemble drip marks in wet paint,4 evolved shapes corresponding to the optimal perturba-
f||ms_. ) tions rapidly asymptote to the predictions of modal theory
Direct comparison of the features of unstable flow be-yith minimal transient growt{12]. Whether these results
tween theory and experiment or between different theoreticadan pe generalized to a system subject to a more realistic
models has been hampered by two issues. The first issu®ntact line model is of significant interest.
centers on the choice of contact line modahd parameter Implementation of a more realistic or self-consistent pre-
rangg used to relieve the stress singularity at the movingcursor film, as for example, one generated by attractive van
front caused by the no-slip boundary condition. Choices inder Waals forces, was first suggested by Huh and Scriven
clude the application of an infinite precursor film of constant[13], who studied lubrication coating flows near the solid-
thickness ahead of the contact line, the inclusion of attractivéiquid-vapor line of contact. They noted that long-range
van der Waals forces in the governing equation for the filmforces become increasingly dominant upon approach to the
height, or various slip boundary conditions at the liquid-solidmoving contact line and derived the asymptotic shape of the
interface. In one of the few studies to compare directly thefilm thickness profile in the van der Waals dominated regime.
Golovin et al. [14] recently implemented a similar approach
by including an attractive van der Waals term directly into
*Electronic address: stroian@princeton.edu; URL: the lubrication equations for thermocapillary spreading.
www.princeton.eduf stroian While this study demonstrates the stabilizing influence of the

1063-651X/2003/6(1)/0163089)/$20.00 67 016308-1 ©2003 The American Physical Society



J. M. DAVIS AND S. M. TROIAN PHYSICAL REVIEW E67, 016308 (2003

van der Waals term, it relies on conventional modal analysisdence of the surface tensign however, plays a critical role
These results are therefore formally valid only for the linear-and is well approximated by the linear relation

ized equations in the infinite time lim{tL5]. Nonetheless,

relieving the contact line singularity by regarding the van der Y=Yt o (T—Ty), ()
Waals forces as an additional pressure gradient on the

spreading film is more realistic than simply patching the "q_)[/vhere Ut:dV/dT' éfgfo:ste}pt(?nd n?ganv}a o;/ert ?hlargel
uid film to an infinite and featureless precursor layer. Fur-¢mperatureé rang - Application of a constant thermal,
radient, therefore, produces a constant shear stress

thermore, the magnitude of the Hamaker constant which cord

trols the degree of disjoining pressure in the film can be_ (d7/dT)(dT/dx) at the air-liquid interface which drives

obtained from experimental data, thereby eliminating the usg1e spreadmg f.|Im toward the cqolest region of the supstrate.
of arbitrary values for the precursor film thickness. E_quat|on(1) N converted to d_lmer.18|0nless form by intro-
This present work extends the earlier study of Golostin ducing the variable transformations:
al. [14] by investigating the generalized non-modal stability
of thermocapillary-spreading films subject to attractive van X="1
der Waals forces. Because the validity of predictions of
modal stability theory cannot be assusegriori for systems
governed by non-normal disturbance operators, the analysis (= y
described below is the appropriate method for determining |
the stability of free surface, lubrication flows. To facilitate
comparison with the modal results, a similar parameter range he ﬂ and
to that used by Goloviet al. is investigated throughout this he'
work.
—
Il. GOVERNING EQUATIONS /U

©)

Consider the upwards thermocapillary spreading of arhe dynamic capillary length=h./(3Ca)"® defines the
completely wetting, Newtonian liquid film of densifyand  spatial extent near the moving front over which the capillary
viscosity » along a substrate inclined from the horizontal by forces due to interfacial curvature compete with the ther-
an angled. The liquid is supplied from a source at constantmocapillary and viscous forces. The capillary number is de-
flux, and a constant thermal gradient is applied along thdined by Ca nU./vy,, whereU.=h.7/ 7 is the characteris-
substrate such that the temperature decreases in the directit/o thermocapillary speed at the air-liquid interfd@]. The
of spreading. The governing equation for the film height inquantityh, denotes the characteristic film thickness far from
the lubrication approximation has been derived elsewherthe contact line, which can be determined from matching the
[10,16, so only the final result is presented here. Near thdilm thickness to the outer region of the flow. If gravitational
front of the spreading film, in the inner region of the flow drainage is significant, as is the case with much thicker
where capillary forces are comparable to viscous and theglimbing films, then the characteristic flow speed includes
mocapillary forces, the evolution equation is given by the retarding term-h2pg sin(6)/(37) [11]. For the range of

. parameters considered below, for which gravitational drain-
’Th2> pgsin(9)h® h3
X

+V-

T age is negligible, the value df; is established by the film
h+ 27 37 377V{ pgcog6)h

thickness emerging from the meniscus region at the liquid
source[21-23.
The dimensionless form of Eql) is

X

+ v0V?h+Ash 3| =0, )

hi+(Bh—1)hh,+V-[h®V(—-Dh+V?h+Vh %)]=0,
(4)

wherex indicates the streamwise direction of flow,indi-
c_ates the d|rec.t|on transverse tq the flayis the gravita- WhereVE)A(aXJrZag and subscripts denote partial differen-
tional acceleration constant, aAg is the Hamaker constant. 4tion with respect toy, ¢, ort. From hereon all the overbars

The second and third terms represent contributions 10 thg,e gropped for convenience. Three parameters appear in Eq.
liquid flux arising from the positive thermocapillary force (4), namely

and the negative force due to gravitational drainage. The

terms within brackets signify contributions from hydrostat- pgsin(d)h.

ics, capillary forces due to interfacial curvature f3fh|? B= T '

<1, and attractive van der Waals interactions, respectively.

In thermocapillary-driven systems, the viscosityf the lig- pg cog B)hg 37h.| %3

uid can vary spatially but variations in liquid density are D= Yo Yo ) ' and
typically much smaller and can be ignored. For the short

migration distances studied experimentdlly’,18, the vis- A 37h.| —2/3

cosity of the film is relatively constant, and this simplifica- V= 02 ( C) ) (5)
tion is utilized in the analysis below. The temperature depen- Yohg Yo

016308-2



INFLUENCE OF ATTRACTIVE VAN DER WAALS . .. PHYSICAL REVIEW E 67, 016308 (2003

The parameteB characterizes the relative strength of gravi- ' ' ' '
tational drainage to theupwards thermocapillary force. For ™
a horizontally spreading filnB=0. For the vertically climb-
ing films examined by Cazabat al. [17,22 B=0(10 ).
The parameteD describes the strength of the hydrostatic
pressure relative to the thermocapillary force. Based on 0
available experimental dafd7,18,22,24 D is estimated to

be of O(10™3). In what follows,B and D will therefore be

neglected, and only the influence of the param®&tewhich

characterizes the effect of van der Waals forces relative to
thermocapillary forces, is studied. The parameter rang¥ for

used in this study is similar to that first explored by Golovin

et al.[14] and is representative of estimates derived from the
experimental data of Ludviksson and Lightfof24] and

Cazabagt al. [17,22.

15. y=6x10"
Iil. STEADY TRAVELING WAVE SOLUTIONS

The spreading process can be viewed from a reference 1.0+
frame moving at constant dimensionless speby introduc- h
ing the change of variablé= xy + ct. The steady solution to
Eq. (4) is a traveling wavén=hg(&) subject to the boundary
conditionshg(é—)=1, ho(§—»)=0, ho(é— —=)=b,
andhggg(é— —)=0, whereb=0 is a constant represent- 0.0 : . .
ing the asymptotic thickness of the van der Waals film. These 0 5 10 15
constraints yield a third-order equation for the evolution of
the base state ()

0.5 >

1 FIG. 1. (a) Numerical solution of the steady state film profile,
hghoggg—?vVhoghal— Eh(Z)JFCho—K:O, (6)  ho(&), for parameter value¥=3x102, 6x10 4, 6x10 >, and

6% 10 ®. The influence of the van der Waals forces is apparent in
the transition from the capillary ridge to the precursor filin). The

where c=(1+b)/2 andK=—b/2. If b>0, then the film oo ine pattern in the moving reference fragmey + ct for the
heighth, approaches the asymptotic film thickndssxpo-  .;sev=6x10-2.

nentially fast. This fast decay is the reason for which van der
Waals forces are sometimes simply mimicked by matchin%
the front of a spreading film to an infinite precursor layer of
constant thickned40,11,13. Forb=0, the precursor film is
finite and to first ordehy~ —1/¢ asé— — . The precursor
model withb=0 forms the focus of this work.

In this limit, Eq. (6) becomes

tarted withhy~1, and iteration of the solution continues
until the precursor film profile matches onto the asymptotic
shape described by EB). The choiceb=0 enforces a van
der Waals precursor film whose thickness vanishes in the
limit é— —o. Because the continuum model loses validity
as the film thickness thins to molecular dimensions, the film
1 1 is numerically truncated at the location at which the dimen-
hgh0§§§—3VhO§hgl—§hg+ 5ho=0. (7)  sional film height is approximatel(1 nm). Once the pre-
cursor film is sufficiently thin, the exact location at which the
film is taken to end had a negligible effect on the stability
results presented in Secs. Il B 1 and IV.
Typical solutions for the film height in the inner region
) are shown in Fig. (g). For small values of the parametér
:0,

A Taylor expansion about,=0 yields an implicit equation
for the asymptotic behavior in the precursor region

(8)  the film thickness rapidly vanishes near the contact line.
Smaller values o¥ correspond to smaller values of the pa-

where the arbitrary constant of integration is set to zero bet@meterb used in models employing a flat and infinite pre-
cause the governing equation is translationally invariant. Th&Ursor[10,11,12. Numerical comparison of the base state
series expansion is somewhat involved because of the preg[oflles generated with these two contact line models indi-

ence of logarithmic terms, but E¢8) can also be obtained cates that a valu¥=6x10"* corresponds td~0.05. As
by neglecting the terrhghog‘ff in Eq. (7). the magnitude ol is increased, the liquid is increasingly

attracted to the solid substrate with a subsequent decrease in
the amplitude of the capillary ridge. For sufficiently large
values ofV, the capillary ridge can be altogether suppressed,
The base state solutiomg(£) to Eq. (7) are determined resulting in a spreading film that is asymptotically stable. In
by using a standard shooting schef@g]. The integration is this limit, which requires film thicknesses in the nanometer

oV 6V I ! 1
§+h—0+ n h_()_

A. Numerical solutions of the unperturbed height profile

016308-3



J. M. DAVIS AND S. M. TROIAN PHYSICAL REVIEW E67, 016308 (2003

range, the flow speed due to van der Waals forces is compa- 01] ' ' ' '
rable to the thermocapillary speed. '

The streamfunctiors( £,z) in the moving reference frame 0.0
can be determined from the equation 01]
1, ) 4 S 021
¥(€,2)=|32°=ho(£)2"|[No(&) gze—3VNo(£) ""ho(£) ] 03
1 0.4
- 37, 9
3 05 :
0.0 0.2 04 0.6 0.8 1.0
once the solutiomg (&) is known. Herez denotes the dimen- q

sionless coordinate normal to the spreading plane. The cubic
polynomial results from simplifications introduced thrOUghresponding to the base state profiles shown in Fig. 1Ver6
the lubrication approximation. Selected streamlines are ploty 154 gndv=6x 10-5.

ted in Fig. 1b). In the reference frame moving with the film,

the flow recirculates in the region of the capillary ridge. Two JG

streamlines intersect at tigposition, where the height pro- —=A(§)G, (12
file undergoes a local minimum behind the capillary ridge. at
This intersection occurs at the value, where the local
streamwise velocity vanishes. A very similar pattern of
streamlines was obtained by Goody#6] when solving the . .
full Stokes’ equation for a falling film. In that case also, thereBecause of the spanal dependence of the_base state solution
is a crossing of streamlines at the stagnation point correhO(g) shown in Fig. 1a), the operato_rA(_g) IS T“?“'“Prm?'
sponding to the local minimum in film thickness behind the&nd therefore does not commute with its adjoint, ik,

T - e -
capillary ridge, although this streamline was not explicitly 7 A A- While the stability of a normal system for all times

shown in that work. The close agreement between th& Strictly governed by the eigenspectrumAf this is not

streamline pattern derived from the Stokes’ equation and thatecessarily the case for non-normal systems. It is now widely
derived from lubrication theory further confirms the validity 'ecognized that the modal spectrum for non-normal operators

of the lubrication approximation for thin viscous coating only Qetermlnes the asymptotic stab|l|(y|f_th_e Ilnea_rlzed
equationy ast—o. A more general analysis is required for

FIG. 2. Dispersion curveg3(q), from eigenvalue analysis cor-

whereA denotes the autonomous linearized disturbance op-
erator andG(t) represents the state of the system at time

flows. L i N
examining the stability of the flow at finite tim¢45].
B. Linear stability of traveling wave solutions 1. Asymptotic solutions
Profiles with large capillary ridges as shown in Figa)l The asymptotic solution to Eq11) in the limit t—o can

can undel’go sinusoidal fingering instabilities with well de-be further Specified according to the exponentiai form
fined wave numbeq in the transverse directionZI. The  G(&,t)=H(&)exp@t), whereB denotes thédimensionless
dimensionless wave number is based on the dynamic capitlisturbance growth ratgl5]. The numerical solutions for
lary lengthl as defined earlier. Substitution of the perturbedH (&) and B(q) are found by discretizing Eq11) using a
wave formsh(¢,Z,t) =hg(€) +eh(&,{,t) with e<1, where  central difference scheme and applying a standard QR algo-
) rithm in MATLAB 5.3 to determine the eigenvalues and eigen-
hy(£,4,1)=G(& t)expiq?), (10 functions. The dispersion curves, corresponding to the base
state height profiles fov=6x10"% andV=6x 10" ° shown
into Eq.(4) yields the evolution equation for the streamwisein Fig. 1, are plotted in Fig. 2. The system is asymptotically

disturbance functios(¢,t): unstable for disturbances whose wave numbers lie in the
range 6<g=0.5. The most unstable mode occurs at a value
iG (1 24VhG, 1Vhgge 302V, max~0.30.
a2 T T TR, TG
ho ho 0 2. Transient nonmodal solutions
15Vhy, 1 , —3V _ The. general solution to Ep{.’LZ) is found by si_milarly
5 +§h0—2U—3q2h0h0§ G+ o discretizing Eq. (11) according to a central difference
ha 0 scheme. The number of grid points used to determine the

elements comprising matridA ranged from 3000 to 5000.

—2q2h8>G§§+(3h§h0§)G§§§+ hgeggégzo_ (12) 'I_'he decay boundary conditions determi_ne_ the entries in the
first and last several rows &. The matrix is real, square,
banded, nondefective, and non-normal. SiAde an autono-

This equation is subject to the decay boundary conditiongnous operator, the solution to E@.2) is given by
G,Gs—0 asé— =+, This linear equation can be cast in

operator form as G(t)=expAt)Gy, (13
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whereGy(§) is a vector representing the initial state of the disturbanceV,,(t— ) evolves towarcH; , the eigenvector

system. _ _ o corresponding to the adjoint linearized operaér This ini-
It follows that the maximum possible amplification over tig| disturbance is the function that optimally excites the
time t is given by most unstable mod#](£). The propagator expt) can also

Gl be used to determine the evolution of specific, suboptimal
Bmadt)= sup = = lexp(At)]|, (14) disturbances. This evolution may be useful in making com-
Gop#0 1ol parison to experiments in which a specific disturbance can be

generated in the laboratory or to other transient growth stud-

where||-| denotes the Euclidean or two norm. Singeis  jog of suboptimal perturbatiorig0,31].

nondefective, there exists a similarity transformation

exp(At) =Sexp(At)S ™, (15)
IV. RESULTS OF NONMODAL ANALYSIS
whereA is the diagonal matrix containing the eigenvalues of
A in decreasing order, arfilis the matrix whose columns are
the normalized eigenvectors &f corresponding to each ei-
genvalug 27]. This identity can be used to establish the up-
per and lower bounds dfe*| according to

All matrix norms and singular value decompositions were
computed withvATLAB 5.3 subroutines. The boundary con-
ditions in the precursor region were incorporated into the
computations as follows. Recall from Sec. Il that the choice
b=0 enforces a van der Waals film, whose thickness van-

exp N mat) < exp(At)[|=|S exp(At)S™ Y| ishes af-ﬂoo. For cor_an_JtationaI purposes, the location cor-
L, responding to a vanishingly small thickness was approxi-
<[ Sl s "expAmat)- (16)  mated by the position where the dimensional film height had

. . thinned toO(1 nm). The use of longer domains resulted in a
For a normal operatok, Sis unitary, and both the upper and very slight increase in the values fExp@t)|| over an inter-

lower b(_)unds orfexptA) e_qual EXPhmad) VL. '_I'he €I9€N  hediate time interval but did not affect the magnitudes of the
value with largest real part is, therefore, physically determi-

nant since the growth rate of any disturbance is bounde(rjelevam quantities at the earliest times nor the asymptotic

above byx the spectral abscissa 8f which forms the values ast—z<. Longer domains, however, can cause nu-
/€ DYA max, P ' . merical inaccuracies since the condition number and the ratio
leading entry inA. For a non-normal operator, the eigenvec-

tors are not orthogonal, and the prodyi&|[[S~Y| can be of the largest to smallest element in the mathixincreases
much laraer than u?ﬂt I,Zor hiahl r?on-normal Svstems SeVyvith the length of the precursor film. Since the precursor film
9 M. nghly y > is finite, however, disturbances can only extend as far as the
eral orders of transient amplification could occur and induce omain boundary.
nonlinear effects, thereby invalidating the results of modald A survey of. all available experimental data on
gnta;]ly&sf. The tranae;tbbetr;]av;pr ofdthe ge;neral SOIL@Sﬁ) thermocapillary-driven spreadind 2] reveals that unstable
IS therefore governed by the ime depen enc#etxp G- flow and fingering is well established by dimensionless times
The optimal initial condition that attains the maximum am-, ¢ (for | andU, as defined in Sec. l. For the computa-
\?Jg:gﬁtlggvia;ttélsmtehte I?\ei?et:)mlsnee?:iasa%a:;igglt?:rrﬁnfilystﬁe, tions presented below, the transient analysis was extended
pecify throught=32 to ensure capture of significant amplification

peqt.ﬁ?a;'i?]n'ular value decomposition of the propa atorand instability. By a tim&= 30, the numerical solutions cor-
expA) 9 P propag responding to the evolved states of the optimal disturbances

converge to the eigenfunctions obtained from the modal
exp(At)=U3SVT 1 analysis in Sec. llIB1; the slope of the functions
LAY an Inlexp@t)| for each wave numbey also equal the values of

determines the evolution of an initial staBy over the time  the growth rateg3(q) shown in Fig. 2.

intervalt [29]. The columns of the unitary matri represent

the complete set of initial states; the columns of the unitary o ]

matrix U are orthonormal basis vectors that span the range A. Amplification ratio

space of final states. The elemenisof the diagonal matrix Figure 3 depicts the temporal evolution ofdmp(At)| for

2. which are ordered by growth, describe the amplificationselected wave numbegsand two values of the parameteér

over timet of each corresponding initial state. Note that theFigure 3a) indicates that there is little transient growth for

singular value decomposition must be calculated for eaclall wave numbers. By=5, all the curves assume a linear

time t at which the solution&), 3, andV are sought. form, whose slope asymptotes to the values of the growth
The maximum amplification over timas given byo max, rate obtained in Fig. 2. The solution corresponding)te0

which is the leading singular value of eXd( and by defi- undergoes the largest transient growth at early times but the

nition equal to the Euclidean norm of the matrix exponential.level of amplification is small. Figure(B) shows a similar

The optimal initial disturbance, which forms the first column trend except that the level of amplification is larger, an ex-

of V, is denoted byV,,. As t—x, the evolved state pected result sinc¥ is smaller by an order of magnitude.

omalJopt COrresponding to the optimal initial condition, For this case also, the slope of each curve asymptotes to the

evolves toward the eigenfunctidd(§). The optimal initial  value of the growth rate obtained in Fig. 2. This convergence
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FIG. 3. Maximum possible amplification of disturbances within ~ FIG. 4. Optimal initial disturbance¥,,(t) and the correspond-
a time intervalt for (8 V=6x10* and (b) V=6x10* The ing evolved statesry,Usp(t) for g=0.30 andv=6x10"*. The
ordering of disturbances by wave numlgeaccording to their rela- base state profilay(£) is superimposed. The absolute magnitudes
tive stability is in agreement with results of modal calculations. Theof the initial disturbances and evolved states are arbitrary since they
numerical value of the slope of the curvestasx» reproduces the are calculated from a linear theory. For convenience, these are
predictions of the modal analysis by a tirhe 15. rescaled such that the extremum of the curve with maximum am-
plitude equals the height of the capillary ridgehig(£).

of the asymptotic nonmodal results to the predictions of the
modal analysis serves as a good check on the numeric
schemes used.

e interpretation of the contact line as a noise amplifier
0,31. The optimal initial disturbances for later times, how-
ever, broaden to encompass the entire extent of the film, with
the majority of the weight distributed in the precursor region.
At longer times, the evolved disturbances show progressive
The transient analysis allows investigation of the initial migration into the capillary ridge. The local minimum in the
and evolved form of the disturbances which induce the largoscillation also moves further back from the contact line
est system response. This information can be used to dedusach that the disturbance affects a larger portion of the mac-
which regions of the film profile play a critical role in desta- roscopic film. By a dimensionless time=32, V., and
bilizing the flow. Figure 4 shows the shape of the optimalo .U,y are nearly indistinguishable from the eigenfunc-
initial disturbanceV,,; and the corresponding evolved shape,tionsH+(£) andH(£), respectively. The increase in the mag-
G(t) = omalJopdt), for q=0gma=0.30, V=6X 104, and nitude of the evolved states over time indicates the exponen-
times 1=<t<32. The initial disturbance is applied &t0. tial growth experienced by the initial disturbances. Plots of
The base state solutiohy(¢) has been superimposed on the optimal initial disturbances and evolved states for other
these plots in order to visualize the regions of the film profilechoices of unstable wave number are qualitatively similar to
where the optimal disturbances get localized. The disturthose shown in Fig. 4. The optimal initial and final states for
bance amplitudes are arbitrary since the solutions are ob/=6x10"° are also very similar to those shown in Fig. 4,
tained from a linear analysis but the relative ordering in magthe only significant difference being a slightly higher level of
nitude signifies whether the disturbances grow or decay imlisturbance amplification.
time. Figure 5 depicts the solutions representing the initial ex-
Examination of these curves reveals some interestingitation and evolved response fg=0.60. As shown in Fig.
trends. The optimal initial disturbancé,, applied att=0 2, this wave number corresponds to an asymptotically stable
strongly localizes to the base of the capillary rim toy 1. mode. In contrast to Fig. 4, the solutions in Fig. 5 show that
This immediate and strong response lends some support #ven more of the optimal initial disturbance is localized at

B. Shape of optimal disturbances
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20]" 42060 _h(g)' _______ =8 | then continually excited during the longer residence times of
ey o e =16 the more extended disturbances. By 15— 30 (depending

on the wave number and value \6j, the mode correspond-
ing to the asymptotic modal solution assumes prominence.
Since the linearized disturbance operator is non-normal,
this mode is optimally excited by its associated adjoint
eigenvector.

For asymptotically unstable wave numbers, the optimal
disturbances that induce the largest response at short times
are contained almost entirely in the precursor region, while

-5 0 5 10 15 those which induce the largest response at later times also
g extend through the region of the capillary ridge. The tempo-
(a) ral behavior of these initial perturbations suggests that dis-
turbances to the precursor region that contact the spreading
20l q=0_60' —hft) ~---t=8 film induce an immediate, amplified response, while distur-

----- t=1 e =16 bances that contact the region of the capillary ridge induce
an even larger amplification which is sustained over a much
longer time period. These longer lived disturbances produce
the most destabilizing influence since they are present for
unstable wave numbers but absent for stable ones. This hy-

o-maxuopt(t)
5

05 pothesis is further supported by the relative insensitivity of
the results of the modal theory to the length of the precursor
0.0 = film used.
-5

V. DISCUSSION

A. Numerical issues

While direct computation of the eigenfunctions and eigen-
values of the disturbance matrix is relatively insensitive to
small inaccuracies in the base flow profile, the large number

of the initial disturbances and evolved states are arbitrary since the f Comguttatlons nee?ﬁd to Ca_IC_UIat? thetrr]natglx exptoTenEII_z;I
are calculated from a linear theory. For convenience, these ar xacerbates any problems arising irom the base state. e

rescaled such that the extremum of the curve with maximum aml_e_ngth of the precursor film can als_o affect the results. For a
plitude equals the height of the capillary ridgetig(£). given value oV, shorter precursor films depress the value of

the matrix norm at early times; however, the curves for

the base of the contact line and into the precursor regionln |exp@t)]| vs t eventually asymptote to the same slope

with less weight apportioned to the remainder of the ﬁlmObtalned with longer precursor films for sufficiently longer

behind the contact line. The exponential decay of these di times. This suppression of the amplification ratio is consis-

turbances is also evident from the decreased magnitude %?nt with the Interpretation of the optimal dlsturk_)ances given
. . o . in the preceding section. Perhaps the most serious numerical
Tmalopt at later times. Plots of the optimal initial distur-

bances and evolved states for other choices of stable wa foblems arise from the method by which the unperturbed

L > g fim profile is matched onto the precursor film in the
number are qualitatively similar to those shown in Fig. 5. X . . . ;
shooting routines. Simply patching the leading order

asymptotic behavior for the precursor film shape licr 0
(ho=—6V/¢&) onto the base flow profile yields spurious val-
The behavior of the system’s response shown in Figs. 4ies for|exp(At)| that increase by several orders of magni-
and 5 can be deduced by examining the position of the optude per unit of dimensionless time. This inadequate match-
timal initial disturbance relative to the position of the front of ing procedure also leads to solutions fofexp(At)||, whose
the spreading film. A disturbance well localized in the pre-slope fails to asymptote to the value 8{q) obtained from
cursor region can only induce a significant response once theigenanalysis. The approach followed in this work, in which
contact line(and eventually the capillary ridgehas made the full asymptotic behavior of the precursor filsee Eq.
contact with the perturbation. In the moving reference framg8)] is matched onto the base flow profile, avoids these nu-
defined by the coordinate transformatiés x + ct, the ini-  merical artifacts and produces the correct asymptotic behav-
tial disturbance is convected toward the leading edge of theor ast—o.
stationary film profile shown in Fig.(&). The disturbances The validity of the full matching procedure is further con-
that elicit the response of maximum amplitude at short timedirmed by comparing the results above to those obtained with
are therefore focused just ahead of the apparent contact lina.flat and infinite precursor film with van der Waals forces
At later times, these optimal disturbances broaden into thécluded (not shown. Determination of the base state pro-
precursor region as well as the capillary ridge. The film isfiles for these systems is less demanding numerically, so pro-

FIG. 5. Optimal initial disturbance¥,,(t) and the correspond-
ing evolved statesrm,Uqp(t) for q=0.60 andV=6X 104, The
base state profily(&) is superimposed. The absolute magnitudes

C. Physical interpretation of optimal initial perturbation
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files with sufficiently long precursor films may be obtained as the angle of inclination decreases. While this enhanced
without using a matching scheme. The presence of a flagensitivity to disturbances is not completely understood,
precursor film makes the flow more stable for a given valuehere are fundamental differences between these two coating
of V and reduces the height of the capillary ridge. Howeverflows. The separation of scales in film thicknesses between
the qualitative features of the curvegdrp(At)|| vst and the  the outer macroscopic regigi®(h.)] and the inner precur-
optimal disturbances and evolved states calculated from theor film region[O(b)] is significantly larger in the falling
singular value decomposition of eXt) are similar to the film. In the thermal problem the ratib/h, is O(107%); in
results obtained above. Most significantly, the time depenthe gravity problem this ratio is typical@(10®). Since the
dence of IffexpAt)| is the same, and the optimal initial level of transient amplification increases ka4, decreases,
disturbances are similarly distributed as those shown in Figsnore significant transient growth is expected in the falling

4(a) and Ha). film. In addition, because the driving force responsible for
the spreading differs significantly between the two classes of
B. Comparison of two contact line models flow, the inclination angle of the solid substrai, has a

i . ~more pronounced effect on the falling film. For the

Whether the precursor film used to relieve the stress singermocapillary-driven spreading, the shear stress is a con-
gularity at the moving contact line is artificially generated giant that is independent @ The ratio of the hydrostatic
through application of an infinite and uniformly thick film or fgrce (Fy) to the driving force Eg), therefore, scales as
more realistically generated by directly including van deth/Fd~(hcpg/T)Cachos(e) and is typicallyO(10~3). For
Waals interactions in the governing equations, the most agyravitationally driven spreading, the driving force is propor-
ymptotically unstable wave numb(_ars and the extent of trantjgnal to sin@), and thereforé=,,/F 4~ Cal”*cot(6). This ratio
sient growth for each model are in general agreement. ACean attain values 0D(1) to O(10) for small inclination
counting for the factor of ¥° difference in the scaling for angles.
[20], the van der Waals model predicts a dimensionless fin- Modal stability predicts that the gravitationally driven
gering wavelength within about one percent of the valufow should be stable below a critical value @f It has been
Amax/I~18 found by Kataoka and Troigr0], which favor-  syggested30] that perhaps this modal approach is insuffi-
ably compares to experimentally observed values. While thgjent because experiments have indicated instability even at
specific precursor shape and thickness affect the exact levRlyy angles of inclination. Incorrect estimation of the film
of transient disturbance amplification, the predictions for theneighthc can lead to spurious discrepancy between theory
most critical wavelength as well as the associated growthynq experiment. The large amount of transient growth re-
rate are insensitive to these differences. Comparison of thgorted for the falling film[30] may also account for this
base state profiles, dispersion curves, and eigenfunctionfiscrepancy. The recent spectral analysis of the falling film
generated by either the flat and infinite model or a Greenspagy ye and Chan¢32] lends good insight into the mechanism
slip model also shows no significant difference in systemsesponsible for the instability at small This analysis traces
driven to spread by gravity or centrifugation provided thetnhe interaction between the continuous spectrum and the dis-
slip coefficient is equal to the precursor film thickng6%  crete eigenvalues for the case of a flat and infinitely long
Recently, Diez, Kondic, and BertozfP9] concluded that recyursor film. By contrast, no discrepancy has been ob-
both a flat precursor film and the Greenspan slip model progeryed between the predictions of the modal theory and ex-
vide an adequate numerical description of film spreading itherimental measurements for thermally driven films. In fact,
the lubrication regime, although_the use of a flat film Pro-the remarkably good agreement suggests that significant
vides some computational benefits. That work, however, digransient growth, which could induce nonlinear effects and
not investigate the effect of contact line models on the Ilneafhereby invalidate the asymptotic predictions of the modal

Both the flat precursor mod€1l2] and the model consid-

ered here exhibit modest transient amplification of distur-
bances at early times even for precursor film thicknesses in
the nanometer rangeV&6x 10 °). The level of transient This study explores the transient amplification of optimal
amplification differs only slightly for different wave num- disturbances in thin liquid films driven to spread by ther-
bers. The ordering of the transient growth curves accordingnocapillary forces. The equation governing the evolution of
to the level of amplification corresponds exactly to the modathe film height includes an attractive van der Waals force that
results. This smooth and rapid transition to the asymptotidielps establish a precursor film, thereby removing the usual
behavior predicted by the modal theory explains the sourcetress singularity in problems involving a moving contact
of the good agreement between theory and experiment ddine. The initial disturbances that induce the maximum pos-
spite the non-normal property of the governing disturbancesible amplification at time, as well as the corresponding
operator. evolved states, are identified through a generalized stability

This finding of limited transient amplification differs from analysis appropriate for non-normal systems. This non-
results for film spreading down an inclined plaf0,31]. normal property of the linearized disturbance operétae-
These studies reported disturbance amplification of well ovequires that the upper bound on the disturbance growth rate be
two orders of magnitude at early times<(10) regardless of determined from the norm of the matrix exponential
the stabilizing influence of hydrostatic pressure that increasgexp(At)| rather than from the eigenvalue Afwith largest

VI. CONCLUSION
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real part, which determines the stability for all time only for cursor films which are truncated prematurely depress the dis-
normal operators. turbance amplification for small times but have no effect on
This transient analysis yields several noteworthy resultsthe asymptotic growth rate.
The optimal disturbances for both asymptotically stable and This absence of significant transient growth and the rapid
unstable solutions initially localize to the contact line regionapproach to the asymptotic regime explain the close agree-
near the leading edge of the capillary ridge. At later timesment previously obtained between theory and experiment,
these perturbations broaden extensively into the precursatespite the fact that maximum growth rate was calculated
region. The solutions corresponding to asymptotically un{from the eigenvalue of with largest real parf10,11]. Sig-
stable modes, however, also migrate into the region of thaificant nonmodal growth is likely absent because the angles
capillary ridge. Computation of the maximum possible am-between the dominant and subsequent eigenvectors is rather
plification, as quantified by |lexp(At)|, indicates minimal large. The lack of mode-mode coupling is likely due to the
transient growth with smooth and rapid transition to thefact that the spatial variation of the base state is confined to
growth rateB(q) obtained from conventional modal analy- the region of the capillary ridge near the moving contact line.
sis. Smaller values of the van der Waals paraméferoduce As a result, the subdominant modes are unable to transfer
only slightly larger amplification ratios. This system there- sufficient energy to the leading eigenvector before undergo-
fore exhibits only weak non-normality, a result consistenting significant attenuation by surface tension. Further studies
with transient growth calculations using an alternative con-of the dynamics of spreading caused by alternative driving
tact line model consisting of a flat and infinite precursorforces and alternative contact line models using the more
layer[12]. generalized stability analysis presented here will confirm
From a computational standpoint, the large number ofvhether all free surface lubrication flows display limited dis-
floating point operations required for the computation of theturbance amplification.
matrix exponential exacerbates any small inaccuracies in the
base ﬂow_profile, making the transient calcula_\tions much ACKNOWLEDGMENTS
more sensitive to errors than the modal calculations relevant
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