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Influence of attractive van der Waals interactions on the optimal excitations
in thermocapillary-driven spreading
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Recent investigations of microfluidic flows have focused on manipulating the motion of very thin liquid
films by modulating the surface tension through an applied streamwise temperature gradient. The extent to
which the choice of contact line model affects the flow and stability of such thermocapillary-driven films is not
completely understood. Regardless of the contact line model used, the linearized disturbance operator corre-
sponding to the evolution of the film height is non-normal, and a generalized non-modal stability analysis is
required. Surprisingly, early predictions of frontal instability that stemmed from conventional modal analysis of
thermocapillary flow on a flat, infinite precursor film showed excellent agreement with experiment. Within the
more rigorous framework provided by a generalized stability analysis, this work investigates the transient
dynamics and amplification of optimal disturbances subject to a finite precursor film generated by attractive
van der Waals forces. Convergence of the disturbance growth rates and perturbed shapes to the asymptotic
solutions obtained by conventional linear stability analysis occurs early in the spreading process. In addition,
the level of transient disturbance amplification is minimal. The equations governing thermocapillary-driven
spreading exhibit a small degree of non-normality, which explains the source of agreement between modal
theory and experiment. The more rigorous generalized stability analysis presented here, however, affords
critical insight into the types of disturbances leading to maximum unstable growth and the exact influence of
the contact line model used.

DOI: 10.1103/PhysRevE.67.016308 PACS number~s!: 47.15.Fe, 47.20.Dr, 47.54.1r, 68.15.1e
m
g
e
pe
a
t
s
ry
n
o

di

rra
in

e
ic
ss

in
in
n

tiv
lm
lid
th

il-

of
tions

o
the
of
le

bil-
lly

ized
aly-
ite
tes

rba-
ry

s
istic

re-
van
ven
d-
ge
the
the
e.
h
to
g.

the
I. INTRODUCTION

The recent focus on microscale flow phenomena and
crofluidic devices@1,2# has generated interest in controllin
the motion of thin liquid films through modulation of surfac
forces. One such technique exploits the temperature de
dence of the surface tension to regulate the magnitude
direction of flow@3,4#. Application of a temperature gradien
to a solid substrate produces a gradient in the surface ten
of the supported liquid film. This induced thermocapilla
stress forces liquid to spread from warmer to cooler regio
For thin films spreading on a uniform and chemically hom
geneous surface, a capillary ridge develops at the lea
edge. In analogy to other driven spreading systems@5#, this
ridge undergoes capillary breakup to produce a parallel a
of spreading rivulets that resemble drip marks in wet pa
films.

Direct comparison of the features of unstable flow b
tween theory and experiment or between different theoret
models has been hampered by two issues. The first i
centers on the choice of contact line model~and parameter
range! used to relieve the stress singularity at the mov
front caused by the no-slip boundary condition. Choices
clude the application of an infinite precursor film of consta
thickness ahead of the contact line, the inclusion of attrac
van der Waals forces in the governing equation for the fi
height, or various slip boundary conditions at the liquid-so
interface. In one of the few studies to compare directly

*Electronic address: stroian@princeton.edu; URL:
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effect of different contact line models on the flow and stab
ity of films driven to spread by gravity or centrifugation@6#,
it was shown that there was little difference in the shape
the base states, the dispersion curves, and the eigenfunc
generated by either the infinite flat precursor film@7,8# or the
Greenspan slip condition@9# for parameter ranges leading t
comparable film thicknesses. The second issue involves
type of analysis used in characterizing the linear stability
the flow. While numerical predictions of the most unstab
wavelength computed from conventional modal linear sta
ity show excellent agreement with experiment for therma
driven flows@10,11#, it is now recognized@12# that since the
linearized disturbance operator is nonnormal, a general
nonmodal analysis is required. Recently, a nonmodal an
sis for thermocapillary-driven spreading on a flat and infin
precursor film has shown that the disturbance growth ra
and evolved shapes corresponding to the optimal pertu
tions rapidly asymptote to the predictions of modal theo
with minimal transient growth@12#. Whether these result
can be generalized to a system subject to a more real
contact line model is of significant interest.

Implementation of a more realistic or self-consistent p
cursor film, as for example, one generated by attractive
der Waals forces, was first suggested by Huh and Scri
@13#, who studied lubrication coating flows near the soli
liquid-vapor line of contact. They noted that long-ran
forces become increasingly dominant upon approach to
moving contact line and derived the asymptotic shape of
film thickness profile in the van der Waals dominated regim
Golovin et al. @14# recently implemented a similar approac
by including an attractive van der Waals term directly in
the lubrication equations for thermocapillary spreadin
While this study demonstrates the stabilizing influence of
©2003 The American Physical Society08-1
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van der Waals term, it relies on conventional modal analy
These results are therefore formally valid only for the line
ized equations in the infinite time limit@15#. Nonetheless,
relieving the contact line singularity by regarding the van d
Waals forces as an additional pressure gradient on
spreading film is more realistic than simply patching the l
uid film to an infinite and featureless precursor layer. F
thermore, the magnitude of the Hamaker constant which c
trols the degree of disjoining pressure in the film can
obtained from experimental data, thereby eliminating the
of arbitrary values for the precursor film thickness.

This present work extends the earlier study of Golovinet
al. @14# by investigating the generalized non-modal stabil
of thermocapillary-spreading films subject to attractive v
der Waals forces. Because the validity of predictions
modal stability theory cannot be assureda priori for systems
governed by non-normal disturbance operators, the ana
described below is the appropriate method for determin
the stability of free surface, lubrication flows. To facilita
comparison with the modal results, a similar parameter ra
to that used by Golovinet al. is investigated throughout thi
work.

II. GOVERNING EQUATIONS

Consider the upwards thermocapillary spreading o
completely wetting, Newtonian liquid film of densityr and
viscosityh along a substrate inclined from the horizontal
an angleu. The liquid is supplied from a source at consta
flux, and a constant thermal gradient is applied along
substrate such that the temperature decreases in the dire
of spreading. The governing equation for the film height
the lubrication approximation has been derived elsewh
@10,16#, so only the final result is presented here. Near
front of the spreading film, in the inner region of the flo
where capillary forces are comparable to viscous and t
mocapillary forces, the evolution equation is given by

ht1 S th2

2h D
x

2Frg sin~u!h3

3h G
x

1¹•F h3

3h
¹$2rg cos~u!h

1g0¹2h1A0h23%G50, ~1!

where x̂ indicates the streamwise direction of flow,ŷ indi-
cates the direction transverse to the flow,g is the gravita-
tional acceleration constant, andA0 is the Hamaker constan
The second and third terms represent contributions to
liquid flux arising from the positive thermocapillary forc
and the negative force due to gravitational drainage. T
terms within brackets signify contributions from hydrosta
ics, capillary forces due to interfacial curvature foru¹h̃u2
!1, and attractive van der Waals interactions, respectiv
In thermocapillary-driven systems, the viscosityh of the liq-
uid can vary spatially but variations in liquid density a
typically much smaller and can be ignored. For the sh
migration distances studied experimentally@17,18#, the vis-
cosity of the film is relatively constant, and this simplific
tion is utilized in the analysis below. The temperature dep
01630
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dence of the surface tensiong, however, plays a critical role
and is well approximated by the linear relation

g5g01s ~T2T0!, ~2!

where s5dg/dT, is constant~and negative! over a large
temperature range@19#. Application of a constant therma
gradient, therefore, produces a constant shear strest
5(dg/dT)(dT/dx) at the air-liquid interface which drives
the spreading film toward the coolest region of the substr

Equation~1! is converted to dimensionless form by intro
ducing the variable transformations:

x52
x

l
,

z5
y

l
,

h̄5
h

hc
, and

t̄ 5
t

l /Uc
. ~3!

The dynamic capillary lengthl 5hc /(3Ca)1/3 defines the
spatial extent near the moving front over which the capilla
forces due to interfacial curvature compete with the th
mocapillary and viscous forces. The capillary number is
fined by Ca5hUc /go , whereUc[hct/h is the characteris-
tic thermocapillary speed at the air-liquid interface@20#. The
quantityhc denotes the characteristic film thickness far fro
the contact line, which can be determined from matching
film thickness to the outer region of the flow. If gravitation
drainage is significant, as is the case with much thic
climbing films, then the characteristic flow speed includ
the retarding term2hc

2rg sin(u)/(3h) @11#. For the range of
parameters considered below, for which gravitational dra
age is negligible, the value ofhc is established by the film
thickness emerging from the meniscus region at the liq
source@21–23#.

The dimensionless form of Eq.~1! is

ht1~Bh21!hhx1“•@h3
“~2Dh1¹2h1Vh23!#50,

~4!

where¹[x̂]x1 ẑ]z and subscripts denote partial differe
tiation with respect tox,z, or t. From hereon all the overbar
are dropped for convenience. Three parameters appear in
~4!, namely

B5
rg sin~u!hc

t
,

D5S rg cos~u!hc
2

g0
D S 3thc

g0
D 22/3

, and

V5S A0

g0hc
2D S 3thc

g0
D 22/3

. ~5!
8-2
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The parameterB characterizes the relative strength of gra
tational drainage to the~upwards! thermocapillary force. For
a horizontally spreading film,B50. For the vertically climb-
ing films examined by Cazabatet al. @17,22# B5O(1022).
The parameterD describes the strength of the hydrosta
pressure relative to the thermocapillary force. Based
available experimental data@17,18,22,24#, D is estimated to
be of O(1023). In what follows,B andD will therefore be
neglected, and only the influence of the parameterV, which
characterizes the effect of van der Waals forces relative
thermocapillary forces, is studied. The parameter range foV
used in this study is similar to that first explored by Golov
et al. @14# and is representative of estimates derived from
experimental data of Ludviksson and Lightfoot@24# and
Cazabatet al. @17,22#.

III. STEADY TRAVELING WAVE SOLUTIONS

The spreading process can be viewed from a refere
frame moving at constant dimensionless speedc by introduc-
ing the change of variablej5x1ct. The steady solution to
Eq. ~4! is a traveling waveh5h0(j) subject to the boundary
conditionsh0(j→`)51, h0j(j→`)50, h0(j→2`)5b,
andh0jjj(j→2`)50, whereb>0 is a constant represen
ing the asymptotic thickness of the van der Waals film. Th
constraints yield a third-order equation for the evolution
the base state

h0
3h0jjj23Vh0jh0

212
1

2
h0

21ch02K50, ~6!

where c5(11b)/2 and K52b/2. If b.0, then the film
heighth0 approaches the asymptotic film thicknessb expo-
nentially fast. This fast decay is the reason for which van
Waals forces are sometimes simply mimicked by match
the front of a spreading film to an infinite precursor layer
constant thickness@10,11,12#. Forb50, the precursor film is
finite and to first orderh0;21/j asj→2`. The precursor
model withb50 forms the focus of this work.

In this limit, Eq. ~6! becomes

h0
3h0jjj23Vh0jh0

212
1

2
h0

21
1

2
h050. ~7!

A Taylor expansion abouth050 yields an implicit equation
for the asymptotic behavior in the precursor region

j1
6V

h0
16V lnS 1

h0
21D50, ~8!

where the arbitrary constant of integration is set to zero
cause the governing equation is translationally invariant. T
series expansion is somewhat involved because of the p
ence of logarithmic terms, but Eq.~8! can also be obtained
by neglecting the termh0

3h0jjj in Eq. ~7!.

A. Numerical solutions of the unperturbed height profile

The base state solutionsh0(j) to Eq. ~7! are determined
by using a standard shooting scheme@25#. The integration is
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started withh0'1, and iteration of the solution continue
until the precursor film profile matches onto the asympto
shape described by Eq.~8!. The choiceb50 enforces a van
der Waals precursor film whose thickness vanishes in
limit j→2`. Because the continuum model loses valid
as the film thickness thins to molecular dimensions, the fi
is numerically truncated at the location at which the dime
sional film height is approximatelyO(1 nm). Once the pre-
cursor film is sufficiently thin, the exact location at which th
film is taken to end had a negligible effect on the stabil
results presented in Secs. III B 1 and IV.

Typical solutions for the film height in the inner regio
are shown in Fig. 1~a!. For small values of the parameterV,
the film thickness rapidly vanishes near the contact li
Smaller values ofV correspond to smaller values of the p
rameterb used in models employing a flat and infinite pr
cursor @10,11,12#. Numerical comparison of the base sta
profiles generated with these two contact line models in
cates that a valueV5631024 corresponds tob'0.05. As
the magnitude ofV is increased, the liquid is increasingl
attracted to the solid substrate with a subsequent decrea
the amplitude of the capillary ridge. For sufficiently larg
values ofV, the capillary ridge can be altogether suppress
resulting in a spreading film that is asymptotically stable.
this limit, which requires film thicknesses in the nanome

FIG. 1. ~a! Numerical solution of the steady state film profil
h0(j), for parameter valuesV5331022, 631024, 631025, and
631026. The influence of the van der Waals forces is apparen
the transition from the capillary ridge to the precursor film.~b! The
streamline pattern in the moving reference framej5x1ct for the
caseV5631024.
8-3
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range, the flow speed due to van der Waals forces is com
rable to the thermocapillary speed.

The streamfunctionc(j,z) in the moving reference fram
can be determined from the equation

c~j,z!5F1

3
z32h0~j!z2G@h0~j!jjj23Vh0~j!24h0~j!j#

2
1

3
z2, ~9!

once the solutionh0(j) is known. Here,z denotes the dimen
sionless coordinate normal to the spreading plane. The c
polynomial results from simplifications introduced throu
the lubrication approximation. Selected streamlines are p
ted in Fig. 1~b!. In the reference frame moving with the film
the flow recirculates in the region of the capillary ridge. Tw
streamlines intersect at thej position, where the height pro
file undergoes a local minimum behind the capillary ridg
This intersection occurs at thez value, where the loca
streamwise velocity vanishes. A very similar pattern
streamlines was obtained by Goodwin@26# when solving the
full Stokes’ equation for a falling film. In that case also, the
is a crossing of streamlines at the stagnation point co
sponding to the local minimum in film thickness behind t
capillary ridge, although this streamline was not explici
shown in that work. The close agreement between
streamline pattern derived from the Stokes’ equation and
derived from lubrication theory further confirms the validi
of the lubrication approximation for thin viscous coatin
flows.

B. Linear stability of traveling wave solutions

Profiles with large capillary ridges as shown in Fig. 1~a!
can undergo sinusoidal fingering instabilities with well d
fined wave numberq in the transverse direction (ẑ). The
dimensionless wave number is based on the dynamic c
lary lengthl as defined earlier. Substitution of the perturb
wave formsh(j,z,t)5h0(j)1«h1(j,z,t) with «!1, where

h1~j,z,t !5G~j,t !exp~ iqz!, ~10!

into Eq. ~4! yields the evolution equation for the streamwi
disturbance functionG(j,t):

]G

]t
1S 1

2
h0j2

24Vh0j
2

h0
3

1
12Vh0jj

h0
2

1
3q2V

h0
1q4h0

3D G

1S 15Vh0j

h0
2

1
1

2
h022U23q2h0

2h0jD Gj1S 23V

h0

22q2h0
3DGjj1~3h0

2h0j!Gjjj1h0
3Gjjjj50. ~11!

This equation is subject to the decay boundary conditi
G,Gj→0 as j→6`. This linear equation can be cast
operator form as
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5A~j!G, ~12!

whereA denotes the autonomous linearized disturbance
erator andG(t) represents the state of the system at timet.
Because of the spatial dependence of the base state sol
h0(j) shown in Fig. 1~a!, the operatorA(j) is non-normal
and therefore does not commute with its adjoint, i.e.,AA†

ÞA†A. While the stability of a normal system for all timest
is strictly governed by the eigenspectrum ofA, this is not
necessarily the case for non-normal systems. It is now wid
recognized that the modal spectrum for non-normal opera
only determines the asymptotic stability~of the linearized
equations! as t→`. A more general analysis is required fo
examining the stability of the flow at finite times@15#.

1. Asymptotic solutions

The asymptotic solution to Eq.~11! in the limit t→` can
be further specified according to the exponential fo
G(j,t)5H(j)exp(bt), whereb denotes the~dimensionless!
disturbance growth rate@15#. The numerical solutions for
H(j) and b(q) are found by discretizing Eq.~11! using a
central difference scheme and applying a standard QR a
rithm in MATLAB 5.3 to determine the eigenvalues and eige
functions. The dispersion curves, corresponding to the b
state height profiles forV5631024 andV5631025 shown
in Fig. 1, are plotted in Fig. 2. The system is asymptotica
unstable for disturbances whose wave numbers lie in
range 0,q<0.5. The most unstable mode occurs at a va
qmax'0.30.

2. Transient nonmodal solutions

The general solution to Eq.~12! is found by similarly
discretizing Eq. ~11! according to a central differenc
scheme. The number of grid points used to determine
elements comprising matrixA ranged from 3000 to 5000
The decay boundary conditions determine the entries in
first and last several rows ofA. The matrix is real, square
banded, nondefective, and non-normal. SinceA is an autono-
mous operator, the solution to Eq.~12! is given by

G~ t !5exp~At !G0 , ~13!

FIG. 2. Dispersion curves,b(q), from eigenvalue analysis cor
responding to the base state profiles shown in Fig. 1 forV56
31024 andV5631025.
8-4
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INFLUENCE OF ATTRACTIVE VAN DER WAALS . . . PHYSICAL REVIEW E 67, 016308 ~2003!
whereG0(j) is a vector representing the initial state of t
system.

It follows that the maximum possible amplification ov
time t is given by

bmax~ t ![ sup
G0Þ0

iGi
iG0i 5iexp~At !i , ~14!

where i•i denotes the Euclidean or two norm. SinceA is
nondefective, there exists a similarity transformation

exp~At !5Sexp~Lt !S21, ~15!

whereL is the diagonal matrix containing the eigenvalues
A in decreasing order, andS is the matrix whose columns ar
the normalized eigenvectors ofA corresponding to each e
genvalue@27#. This identity can be used to establish the u
per and lower bounds onieAti according to

exp~lmaxt !<iexp~At !i5iS exp~Lt !S21i

<iSi iS21iexp~lmaxt !. ~16!

For a normal operatorA, S is unitary, and both the upper an
lower bounds oniexp(tA)i equal exp(lmaxt);t. The eigen-
value with largest real part is, therefore, physically deter
nant since the growth rate of any disturbance is boun
above bylmax, the spectral abscissa ofA, which forms the
leading entry inL. For a non-normal operator, the eigenve
tors are not orthogonal, and the productiSiiS21i can be
much larger than unity. For highly non-normal systems, s
eral orders of transient amplification could occur and indu
nonlinear effects, thereby invalidating the results of mo
analysis. The transient behavior of the general solutionG(j)
is therefore governed by the time dependence ofiexp(At)i .
The optimal initial condition that attains the maximum am
plification at time t is determined as part of the analys
which obviates the need to specify an initial form for t
perturbation.

The singular value decomposition of the propaga
exp(At),

exp~At !5USV†, ~17!

determines the evolution of an initial stateG0 over the time
interval t @29#. The columns of the unitary matrixV represent
the complete set of initial states; the columns of the unit
matrix U are orthonormal basis vectors that span the ra
space of final states. The elementss i of the diagonal matrix
S which are ordered by growth, describe the amplificat
over timet of each corresponding initial state. Note that t
singular value decomposition must be calculated for e
time t at which the solutionsU, S, andV are sought.

The maximum amplification over timet is given bysmax,
which is the leading singular value of exp(At) and by defi-
nition equal to the Euclidean norm of the matrix exponent
The optimal initial disturbance, which forms the first colum
of V, is denoted byVopt. As t→`, the evolved state
smaxUopt corresponding to the optimal initial condition
evolves toward the eigenfunctionH(j). The optimal initial
01630
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disturbanceVopt(t→`) evolves towardH† , the eigenvector
corresponding to the adjoint linearized operatorA†. This ini-
tial disturbance is the function that optimally excites t
most unstable mode,H(j). The propagator exp(At) can also
be used to determine the evolution of specific, suboptim
disturbances. This evolution may be useful in making co
parison to experiments in which a specific disturbance can
generated in the laboratory or to other transient growth st
ies of suboptimal perturbations@30,31#.

IV. RESULTS OF NONMODAL ANALYSIS

All matrix norms and singular value decompositions we
computed withMATLAB 5.3 subroutines. The boundary co
ditions in the precursor region were incorporated into
computations as follows. Recall from Sec. III that the cho
b50 enforces a van der Waals film, whose thickness v
ishes asj→`. For computational purposes, the location co
responding to a vanishingly small thickness was appro
mated by the position where the dimensional film height h
thinned toO(1 nm). The use of longer domains resulted in
very slight increase in the values ofiexp(At)i over an inter-
mediate time interval but did not affect the magnitudes of
relevant quantities at the earliest times nor the asympt
values ast→`. Longer domains, however, can cause n
merical inaccuracies since the condition number and the r
of the largest to smallest element in the matrixA increases
with the length of the precursor film. Since the precursor fi
is finite, however, disturbances can only extend as far as
domain boundary.

A survey of all available experimental data o
thermocapillary-driven spreading@12# reveals that unstable
flow and fingering is well established by dimensionless tim
t,25 ~for l andUc as defined in Sec. II! . For the computa-
tions presented below, the transient analysis was exten
through t532 to ensure capture of significant amplificatio
and instability. By a timet530, the numerical solutions cor
responding to the evolved states of the optimal disturban
converge to the eigenfunctions obtained from the mo
analysis in Sec. III B 1; the slope of the function
lniexp(At)i for each wave numberq also equal the values o
the growth ratesb(q) shown in Fig. 2.

A. Amplification ratio

Figure 3 depicts the temporal evolution of lniexp(At)i for
selected wave numbersq and two values of the parameterV.
Figure 3~a! indicates that there is little transient growth fo
all wave numbers. Byt55, all the curves assume a linea
form, whose slope asymptotes to the values of the gro
rate obtained in Fig. 2. The solution corresponding toq50
undergoes the largest transient growth at early times but
level of amplification is small. Figure 3~b! shows a similar
trend except that the level of amplification is larger, an e
pected result sinceV is smaller by an order of magnitude
For this case also, the slope of each curve asymptotes to
value of the growth rate obtained in Fig. 2. This convergen
8-5
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of the asymptotic nonmodal results to the predictions of
modal analysis serves as a good check on the nume
schemes used.

B. Shape of optimal disturbances

The transient analysis allows investigation of the init
and evolved form of the disturbances which induce the la
est system response. This information can be used to de
which regions of the film profile play a critical role in dest
bilizing the flow. Figure 4 shows the shape of the optim
initial disturbanceVopt and the corresponding evolved shap
G(t)5smaxUopt(t), for q5qmax50.30, V5631024, and
times 1<t<32. The initial disturbance is applied att50.
The base state solutionh0(j) has been superimposed o
these plots in order to visualize the regions of the film pro
where the optimal disturbances get localized. The dis
bance amplitudes are arbitrary since the solutions are
tained from a linear analysis but the relative ordering in m
nitude signifies whether the disturbances grow or decay
time.

Examination of these curves reveals some interes
trends. The optimal initial disturbanceVopt applied att50
strongly localizes to the base of the capillary rim byt51.
This immediate and strong response lends some suppo

FIG. 3. Maximum possible amplification of disturbances with
a time interval t for ~a! V5631024 and ~b! V5631024. The
ordering of disturbances by wave numberq according to their rela-
tive stability is in agreement with results of modal calculations. T
numerical value of the slope of the curves ast→` reproduces the
predictions of the modal analysis by a timet515.
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the interpretation of the contact line as a noise ampli
@30,31#. The optimal initial disturbances for later times, how
ever, broaden to encompass the entire extent of the film, w
the majority of the weight distributed in the precursor regio
At longer times, the evolved disturbances show progress
migration into the capillary ridge. The local minimum in th
oscillation also moves further back from the contact li
such that the disturbance affects a larger portion of the m
roscopic film. By a dimensionless timet532, Vopt and
smaxUopt are nearly indistinguishable from the eigenfun
tionsH†(j) andH(j), respectively. The increase in the ma
nitude of the evolved states over time indicates the expon
tial growth experienced by the initial disturbances. Plots
the optimal initial disturbances and evolved states for ot
choices of unstable wave number are qualitatively similar
those shown in Fig. 4. The optimal initial and final states
V5631025 are also very similar to those shown in Fig.
the only significant difference being a slightly higher level
disturbance amplification.

Figure 5 depicts the solutions representing the initial
citation and evolved response forq50.60. As shown in Fig.
2, this wave number corresponds to an asymptotically sta
mode. In contrast to Fig. 4, the solutions in Fig. 5 show t
even more of the optimal initial disturbance is localized

e

FIG. 4. Optimal initial disturbancesVopt(t) and the correspond
ing evolved statessmaxUopt(t) for q50.30 andV5631024. The
base state profileh0(j) is superimposed. The absolute magnitud
of the initial disturbances and evolved states are arbitrary since
are calculated from a linear theory. For convenience, these
rescaled such that the extremum of the curve with maximum
plitude equals the height of the capillary ridge inh0(j).
8-6



io
lm
di
e
r-
a

.

.
o
of
re

t

m

th

e
lin
th
i

of

-
ce.
al,

int

al
imes
ile

also
o-

dis-
ding
ur-
uce
uch
uce
for
hy-
of
sor

n-
to
ber
tial
The
r a
of

for
pe
er
is-
en
rical
ed
e
er

l-
ni-
tch-

ch

nu-
av-

n-
ith

es
o-
pro-

-

e
th
a

am

INFLUENCE OF ATTRACTIVE VAN DER WAALS . . . PHYSICAL REVIEW E 67, 016308 ~2003!
the base of the contact line and into the precursor reg
with less weight apportioned to the remainder of the fi
behind the contact line. The exponential decay of these
turbances is also evident from the decreased magnitud
smaxUopt at later times. Plots of the optimal initial distu
bances and evolved states for other choices of stable w
number are qualitatively similar to those shown in Fig. 5

C. Physical interpretation of optimal initial perturbation

The behavior of the system’s response shown in Figs
and 5 can be deduced by examining the position of the
timal initial disturbance relative to the position of the front
the spreading film. A disturbance well localized in the p
cursor region can only induce a significant response once
contact line~and eventually the capillary ridge! has made
contact with the perturbation. In the moving reference fra
defined by the coordinate transformationj5x1ct, the ini-
tial disturbance is convected toward the leading edge of
stationary film profile shown in Fig. 1~a!. The disturbances
that elicit the response of maximum amplitude at short tim
are therefore focused just ahead of the apparent contact
At later times, these optimal disturbances broaden into
precursor region as well as the capillary ridge. The film

FIG. 5. Optimal initial disturbancesVopt(t) and the correspond
ing evolved statessmaxUopt(t) for q50.60 andV5631024. The
base state profileh0(j) is superimposed. The absolute magnitud
of the initial disturbances and evolved states are arbitrary since
are calculated from a linear theory. For convenience, these
rescaled such that the extremum of the curve with maximum
plitude equals the height of the capillary ridge inh0(j).
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then continually excited during the longer residence times
the more extended disturbances. Byt'15230 ~depending
on the wave number and value ofV), the mode correspond
ing to the asymptotic modal solution assumes prominen
Since the linearized disturbance operator is non-norm
this mode is optimally excited by its associated adjo
eigenvector.

For asymptotically unstable wave numbers, the optim
disturbances that induce the largest response at short t
are contained almost entirely in the precursor region, wh
those which induce the largest response at later times
extend through the region of the capillary ridge. The temp
ral behavior of these initial perturbations suggests that
turbances to the precursor region that contact the sprea
film induce an immediate, amplified response, while dist
bances that contact the region of the capillary ridge ind
an even larger amplification which is sustained over a m
longer time period. These longer lived disturbances prod
the most destabilizing influence since they are present
unstable wave numbers but absent for stable ones. This
pothesis is further supported by the relative insensitivity
the results of the modal theory to the length of the precur
film used.

V. DISCUSSION

A. Numerical issues

While direct computation of the eigenfunctions and eige
values of the disturbance matrix is relatively insensitive
small inaccuracies in the base flow profile, the large num
of computations needed to calculate the matrix exponen
exacerbates any problems arising from the base state.
length of the precursor film can also affect the results. Fo
given value ofV, shorter precursor films depress the value
the matrix norm at early times; however, the curves
ln i exp(At)i vs t eventually asymptote to the same slo
obtained with longer precursor films for sufficiently long
times. This suppression of the amplification ratio is cons
tent with the interpretation of the optimal disturbances giv
in the preceding section. Perhaps the most serious nume
problems arise from the method by which the unperturb
film profile is matched onto the precursor film in th
shooting routines. Simply patching the leading ord
asymptotic behavior for the precursor film shape forb50
(h0526V/j) onto the base flow profile yields spurious va
ues foriexp(At)i that increase by several orders of mag
tude per unit of dimensionless time. This inadequate ma
ing procedure also leads to solutions for lniexp(At)i , whose
slope fails to asymptote to the value ofb(q) obtained from
eigenanalysis. The approach followed in this work, in whi
the full asymptotic behavior of the precursor film@see Eq.
~8!# is matched onto the base flow profile, avoids these
merical artifacts and produces the correct asymptotic beh
ior as t→`.

The validity of the full matching procedure is further co
firmed by comparing the results above to those obtained w
a flat and infinite precursor film with van der Waals forc
included ~not shown!. Determination of the base state pr
files for these systems is less demanding numerically, so
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files with sufficiently long precursor films may be obtain
without using a matching scheme. The presence of a
precursor film makes the flow more stable for a given va
of V and reduces the height of the capillary ridge. Howev
the qualitative features of the curves lniexp(At)i vs t and the
optimal disturbances and evolved states calculated from
singular value decomposition of exp(At) are similar to the
results obtained above. Most significantly, the time dep
dence of lniexp(At)i is the same, and the optimal initia
disturbances are similarly distributed as those shown in F
4~a! and 5~a!.

B. Comparison of two contact line models

Whether the precursor film used to relieve the stress
gularity at the moving contact line is artificially generat
through application of an infinite and uniformly thick film o
more realistically generated by directly including van d
Waals interactions in the governing equations, the most
ymptotically unstable wave numbers and the extent of tr
sient growth for each model are in general agreement.
counting for the factor of 21/3 difference in the scaling forl
@20#, the van der Waals model predicts a dimensionless
gering wavelength within about one percent of the va
lmax/l'18 found by Kataoka and Troian@10#, which favor-
ably compares to experimentally observed values. While
specific precursor shape and thickness affect the exact
of transient disturbance amplification, the predictions for
most critical wavelength as well as the associated gro
rate are insensitive to these differences. Comparison of
base state profiles, dispersion curves, and eigenfunct
generated by either the flat and infinite model or a Greens
slip model also shows no significant difference in syste
driven to spread by gravity or centrifugation provided t
slip coefficient is equal to the precursor film thickness@6#.
Recently, Diez, Kondic, and Bertozzi@29# concluded that
both a flat precursor film and the Greenspan slip model p
vide an adequate numerical description of film spreading
the lubrication regime, although the use of a flat film pr
vides some computational benefits. That work, however,
not investigate the effect of contact line models on the lin
stability of the spreading film.

Both the flat precursor model@12# and the model consid
ered here exhibit modest transient amplification of dist
bances at early times even for precursor film thicknesse
the nanometer range (V5631025). The level of transient
amplification differs only slightly for different wave num
bers. The ordering of the transient growth curves accord
to the level of amplification corresponds exactly to the mo
results. This smooth and rapid transition to the asympt
behavior predicted by the modal theory explains the sou
of the good agreement between theory and experiment
spite the non-normal property of the governing disturba
operator.

This finding of limited transient amplification differs from
results for film spreading down an inclined plane@30,31#.
These studies reported disturbance amplification of well o
two orders of magnitude at early times (t,10) regardless of
the stabilizing influence of hydrostatic pressure that increa
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as the angle of inclination decreases. While this enhan
sensitivity to disturbances is not completely understo
there are fundamental differences between these two coa
flows. The separation of scales in film thicknesses betw
the outer macroscopic region@O(hc)# and the inner precur-
sor film region@O(b)# is significantly larger in the falling
film. In the thermal problem the ratiob/hc is O(1023); in
the gravity problem this ratio is typicallyO(1026). Since the
level of transient amplification increases asb/hc decreases,
more significant transient growth is expected in the falli
film. In addition, because the driving force responsible
the spreading differs significantly between the two classe
flow, the inclination angle of the solid substrate,u, has a
more pronounced effect on the falling film. For th
thermocapillary-driven spreading, the shear stress is a c
stant that is independent ofu. The ratio of the hydrostatic
force (Fh) to the driving force (Fd), therefore, scales a
Fh /Fd;(hcrg/t)Ca1/3cos(u) and is typicallyO(1023). For
gravitationally driven spreading, the driving force is propo
tional to sin(u), and thereforeFh /Fd;Ca1/3cot(u). This ratio
can attain values ofO(1) to O(10) for small inclination
angles.

Modal stability predicts that the gravitationally drive
flow should be stable below a critical value ofu. It has been
suggested@30# that perhaps this modal approach is insuf
cient because experiments have indicated instability eve
low angles of inclination. Incorrect estimation of the film
height hc can lead to spurious discrepancy between the
and experiment. The large amount of transient growth
ported for the falling film@30# may also account for this
discrepancy. The recent spectral analysis of the falling fi
by Ye and Chang@32# lends good insight into the mechanis
responsible for the instability at smallu. This analysis traces
the interaction between the continuous spectrum and the
crete eigenvalues for the case of a flat and infinitely lo
precursor film. By contrast, no discrepancy has been
served between the predictions of the modal theory and
perimental measurements for thermally driven films. In fa
the remarkably good agreement suggests that signifi
transient growth, which could induce nonlinear effects a
thereby invalidate the asymptotic predictions of the mo
theory, should not occur.

VI. CONCLUSION

This study explores the transient amplification of optim
disturbances in thin liquid films driven to spread by the
mocapillary forces. The equation governing the evolution
the film height includes an attractive van der Waals force t
helps establish a precursor film, thereby removing the us
stress singularity in problems involving a moving conta
line. The initial disturbances that induce the maximum p
sible amplification at timet, as well as the correspondin
evolved states, are identified through a generalized stab
analysis appropriate for non-normal systems. This n
normal property of the linearized disturbance operatorA re-
quires that the upper bound on the disturbance growth rat
determined from the norm of the matrix exponent
iexp(At)i rather than from the eigenvalue ofA with largest
8-8
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real part, which determines the stability for all time only f
normal operators.

This transient analysis yields several noteworthy resu
The optimal disturbances for both asymptotically stable a
unstable solutions initially localize to the contact line regi
near the leading edge of the capillary ridge. At later tim
these perturbations broaden extensively into the precu
region. The solutions corresponding to asymptotically u
stable modes, however, also migrate into the region of
capillary ridge. Computation of the maximum possible a
plification, as quantified by lniexp(At)i , indicates minimal
transient growth with smooth and rapid transition to t
growth rateb(q) obtained from conventional modal anal
sis. Smaller values of the van der Waals parameterV produce
only slightly larger amplification ratios. This system ther
fore exhibits only weak non-normality, a result consiste
with transient growth calculations using an alternative c
tact line model consisting of a flat and infinite precurs
layer @12#.

From a computational standpoint, the large number
floating point operations required for the computation of
matrix exponential exacerbates any small inaccuracies in
base flow profile, making the transient calculations mu
more sensitive to errors than the modal calculations relev
to conventional linear stability analysis. The approach f
lowed in this work, in which the full asymptotic behavior o
the precursor film@see Eq.~8!# is matched onto the base flo
profile, yields the correct asymptotic behavior ast→`. Pre-
ir

ur
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cursor films which are truncated prematurely depress the
turbance amplification for small times but have no effect
the asymptotic growth rate.

This absence of significant transient growth and the ra
approach to the asymptotic regime explain the close ag
ment previously obtained between theory and experim
despite the fact that maximum growth rate was calcula
from the eigenvalue ofA with largest real part@10,11#. Sig-
nificant nonmodal growth is likely absent because the ang
between the dominant and subsequent eigenvectors is r
large. The lack of mode-mode coupling is likely due to t
fact that the spatial variation of the base state is confine
the region of the capillary ridge near the moving contact lin
As a result, the subdominant modes are unable to tran
sufficient energy to the leading eigenvector before under
ing significant attenuation by surface tension. Further stud
of the dynamics of spreading caused by alternative driv
forces and alternative contact line models using the m
generalized stability analysis presented here will confi
whether all free surface lubrication flows display limited d
turbance amplification.
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